Exploring Components of the CO2-Concentrating Mechanism in Alkaliphilic Cyanobacteria Through Genome-Based Analysis

نویسندگان

  • Amornpan Klanchui
  • Supapon Cheevadhanarak
  • Peerada Prommeenate
  • Asawin Meechai
چکیده

In cyanobacteria, the CO2-concentrating mechanism (CCM) is a vital biological process that provides effective photosynthetic CO2 fixation by elevating the CO2 level near the active site of Rubisco. This process enables the adaptation of cyanobacteria to various habitats, particularly in CO2-limited environments. Although CCM of freshwater and marine cyanobacteria are well studied, there is limited information on the CCM of cyanobacteria living under alkaline environments. Here, we aimed to explore the molecular components of CCM in 12 alkaliphilic cyanobacteria through genome-based analysis. These cyanobacteria included 6 moderate alkaliphiles; Pleurocapsa sp. PCC 7327, Synechococcus spp., Cyanobacterium spp., Spirulina subsalsa PCC 9445, and 6 strong alkaliphiles (i.e. Arthrospira spp.). The results showed that both groups belong to β-cyanobacteria based on β-carboxysome shell proteins with form 1B of Rubisco. They also contained standard genes, ccmKLMNO cluster, which is essential for β-carboxysome formation. Most strains did not have the high-affinity Na+/HCO3- symporter SbtA and the medium-affinity ATP-dependent HCO3- transporter BCT1. Specifically, all strong alkaliphiles appeared to lack BCT1. Beside the transport systems, carboxysomal β-CA, CcaA, was absent in all alkaliphiles, except for three moderate alkaliphiles: Pleurocapsa sp. PCC 7327, Cyanobacteriumstranieri PCC 7202, and Spirulina subsalsa PCC 9445. Furthermore, comparative analysis of the CCM components among freshwater, marine, and alkaliphilic β-cyanobacteria revealed that the basic molecular components of the CCM in the alkaliphilic cyanobacteria seemed to share more degrees of similarity with freshwater than marine cyanobacteria. These findings provide a relationship between the CCM components of cyanobacteria and their habitats.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

concentrating-mechanism (CCM): functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants

Cyanobacteria have evolved a significant environmental adaptation, known as a CO2-concentrating-mechanism (CCM), that vastly improves photosynthetic performance and survival under limiting CO2 concentrations. The CCM functions to transport and accumulate inorganic carbon actively (Ci; HCO23 , and CO2) within the cell where the Ci pool is utilized to provide elevated CO2 concentrations around th...

متن کامل

The environmental plasticity and ecological genomics of the cyanobacterial CO2 concentrating mechanism.

Cyanobacteria probably exhibit the widest range of diversity in growth habitats of all photosynthetic organisms. They are found in cold and hot, alkaline and acidic, marine, freshwater, saline, terrestrial, and symbiotic environments. In addition to this, they originated on earth at least 2.5 billion years ago and have evolved through periods of dramatic O2 increases, CO2 declines, and temperat...

متن کامل

Systems analysis of the CO2 concentrating mechanism in cyanobacteria

Cyanobacteria are photosynthetic bacteria with a unique CO2 concentrating mechanism (CCM), enhancing carbon fixation. Understanding the CCM requires a systems level perspective of how molecular components work together to enhance CO2 fixation. We present a mathematical model of the cyanobacterial CCM, giving the parameter regime (expression levels, catalytic rates, permeability of carboxysome s...

متن کامل

Advances in understanding the cyanobacterial CO2-concentrating-mechanism (CCM): functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants.

Cyanobacteria have evolved a significant environmental adaptation, known as a CO(2)-concentrating-mechanism (CCM), that vastly improves photosynthetic performance and survival under limiting CO(2) concentrations. The CCM functions to transport and accumulate inorganic carbon actively (Ci; HCO(3)(-), and CO(2)) within the cell where the Ci pool is utilized to provide elevated CO(2) concentration...

متن کامل

Inorganic carbon limitation induces transcripts encoding components of the CO(2)-concentrating mechanism in Synechococcus sp. PCC7942 through a redox-independent pathway.

The cyanobacterial CO2-concentrating mechanism (CCM) allows photosynthesis to proceed in CO2-limited aquatic environments, and its activity is modulated in response to inorganic carbon (Ci) availability. Real-time reverse transcriptase-PCR analysis was used to examine the transcriptional regulation of more than 30 CCM-related genes in Synechococcus sp. strain PCC7942 with an emphasis on genes e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2017